

Dynamic Spectral Bisection

Horst D. Simon, Andrew Sohn, and John Wu

National Energy Research Scientific Computing Center (NERSC), Berkeley, CA 94720, hdsimon@lbl.gov

October 14, 1999

Closing the Book on Spectral Partitioning

Horst D. Simon, Andrew Sohn, and John Wu

National Energy Research Scientific Computing Center (NERSC), Berkeley, CA 94720, hdsimon@lbl.gov

October 14, 1999

Outline

- Overview
- Ten years of spectral mesh partitioning
- Recent results with S-HARP
- Other related work in LSI and MATLAB*P
- Conclusions and problems for the future

Over 10 years of mesh partitioning

- Results in the FEM community by Farhat, and by Raefsky, Nour-Omid, and Lyzenga in 1987 and 1988
- First spectral partitioning presented by Pothen and HDS at SIAM Sparse Matrix Meeting in Oregon, May 1989
- Multilevel approach presented by Barnard et al. At SIAM PP conference in Norfolk in 1992
- TMC, Centric adapt spectral in 1993 for commercial software

Spectral Partitioning in 1994

DESIGNING and BUILDING PARALLEL PROGRAMS

Concepts and Tools for Parallel Software Engineering

Developments since 1994

- Further improvements of mutlilevel approach
- Kernighan-Lin type methods improved
- excellent software packages
- we tried hard to prove that spectral approach works for dynamic load balancing (HARP, S-HARP); collaborations with Pramono, Biswas, Sohn, Oliker ...

Summary

- Demonstrated that fully scalable implementation of spectral algorithm is possible
- Performance in the competitive range of other algorithms
- software freely available (www.cs.njit.edu/sohn/sharp)
- 10 years is enough and it's time to close this chapter
- Question for the discussion: we have a great toolbox today in 1999; what else do we need to do in partitioning algorithms?

Open Problems (Part 1) - Work to be Done

PRACTICAL

1) Apply our algorithmic knowledge to real applications

THEORETICAL

- 2) Understand the role and use of higher eigenvectors in spectral partitioning
- 3) Understand the relationship of the spectrum of the Laplacian matrix of a graph to the spectrum of the distance matrix of the graph

MATLAB*P

- Joint work with Alan Edelman (MIT) and Parry Husbands
- client server model running on the T3E and IBM SP, O2000 under development
- see me if you want to use it
- main motivation is to develop a toolbox for information retrieval AND to work with really large data sets
- SEE http://www.nersc.gov/~parry/text/ppserver/index.html

MATLAB*P in action

Parallelism through Polymorphism!!!

- >> a=randn(512,512*p); a2=ones(512*p,512); m=sprand(10000,1000*p,0.01);
- >> whose

Your variables are:

Size Name Class Bytes

512 x 512p 1048576 ddense array

a2 512p x 512 1048576 ddense array

10000 x 1000p 810176 dsparse array

Grand total is 624560 elements using 2907328 bytes

```
>> b=inv(a); c=a*b; c(1:3,1:3)
```

ans =

1.0000 0.0000 -0.0000

-0.0000 1.0000 0.0000

0.0000 -0.0000 1.0000

- >> e=eig(a);plot(e,'*');axis([-30 30 -30 30]);axis('square')
- >> [u,s,v]=svds(m,5);s'

ans =

7.7153 7.7342 7.7447 7.7831 16.9842

>> id=eye(1000*p);x=cumsum(id,1);y=cumsum(x,1);

>> imagesc(y+y')

Latent Semantic Indexing (LSI) and Information Retrieval

- LSI is equivalent to spectral partitioning
- LSI computes SVD of term-document matrix
- consider the term-term matrix (edges when two terms appear in the same document)
- LSI term vectors (singular vectors) are the same vectors as eigenvectors derived from spectral partitioning
- Current work done in Berkeley
 - understand limitations of LSI
 - sparse representation of singular vectors (Zha and Zhang)
 - see http://www.nersc.gov/~parry/text/index.html

Open Problems (part 2) - new directions

INFORMATION RETRIEVAL

- 4) Apply all the wonderful graph partitioning algorithms to information retrieval; develop a "better" LSI
- 5) Solve the "Yahoo problem"
 - our knowledge is hierarchically organized
 - the really intriguing graph problem is how to find trees for information retrieval
- see me if you have ideas!